

Improving the Central Tracking Software in sPHENIX

Verónica Canoa Román Carlos Pérez Lara

One step back...

 Need a workbench where we can test all these improvements in a self consistent and self controlled framework.

- Extracted parts of the sPHENIX simulation package that isolate the TPC particulars.
- Test in standalone mode (using local Geant4+Tools).

 We believe that these tests will provide powerful feedback and will allow to test the fundamental understanding of the TPC simulation including its physics from first principles.

Conformal Map

 Linearisation of curved pattern in X-Y is achieved by the following transformation:

$$- x' = (x-A)/r^2 y' = (y-B)/r^2 r = (x-A)^2 + (x-B)^2$$

Testing alternative pattern recognition strategy

OLYMPUS

Why Olympus?

- Olympus contains two very efficient algorithms:
 - Store a collection of patterns of up to 128bits each on disc.
 - Evaluate if a given pattern contains one from the collection.
- We adapt these features as much as possible to attack our current pattern recognition challenge.

Olympus for Central Tracking

- Clusters can be group into "macroscopic cells" in order to reduce the bit-train size.
- However this reduction might compromise efficiency for high multiplicity events.

- Is it possible to exploit symmetry created by central membrane?
- Is it feasible to catalog in eta?
- Which is better: to add vertex to catalog or to displace patterns during matching?
- Is it better to do matching after space transformation?

Conformal Map

 Linearisation of curved pattern in X-Y is achieved by the following transformation:

$$- x' = (x-A)/r^2 y' = (y-B)/r^2 r = (x-A)^2 + (x-B)^2$$

Each track is from a randomly oriented pion of fixed energy and fix origin.